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Abstract 

This study aims to illustrate an overarching psychometric approach of broad relevance to 

investigations of two sources of construct-relevant psychometric multidimensionality present in many 

complex multidimensional instruments that are routinely used in psychological and educational 

research. These two sources of construct-relevant psychometric multidimensionality are related to: (a) 

the fallible nature of indicators as perfect indicators of a single construct; (b) the hierarchical nature of 

the constructs being assessed. The first source is identified by comparing confirmatory factor analytic 

(CFA) and exploratory structural equation modeling (ESEM) solutions. The second source is 

identified by comparing first-order, hierarchical, and bifactor measurement models. To provide an 

applied illustration of the substantive relevance of this framework, we first apply these models to a 

sample of German children (N = 1957) who completed the Self-Description Questionnaire (SDQ-I). 

Then, in a second study using a simulated data set, we provide a more pedagogical illustration of the 

proposed framework and the broad range of possible applications of bifactor-ESEM models.  

 

Key words: Psychometric, multidimensionality, confirmatory factor analyses (CFA), and exploratory 

structural equation modelling (ESEM), hierarchical, bifactor, self-concept.  
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This manuscript presents an overarching approach that has broad relevance to investigations 

of multidimensional instruments. More specifically, we illustrate the use of the emerging Exploratory 

Structural Equation Modeling (ESEM) framework, of more traditional bifactor models, and of their 

combination in bifactor-ESEM. This combined framework is presented as a way to fully explore the 

mechanisms underlying sources of construct-relevant psychometric multidimensionality present in 

complex measurement instruments. We provide a substantive illustration of the meaning of these 

sources of construct-relevant psychometric multidimensionality modeled as part of this overarching 

framework using real data on the preadolescent version of the Self-Description Questionnaire (SDQ-I; 

Marsh, 1990). Then we illustrate how to conduct these analyses using a simpler simulated data set. 

Old, New, and “Rediscovered” Approaches to Multidimensionality 

For decades, the typical approach to the analysis of multidimensional instruments has been 

based on confirmatory factor analyses (CFA). It is hard to downplay the impact that CFA and the 

overarching Structural Equation Modeling (SEM) framework have had on psychological and 

educational research (e.g., Bollen, 1989; Jöreskog, 1973). SEM provides the possibility to rely on a 

confirmatory approach to psychometric measurement, allowing for the systematic comparison of 

alternative a priori representations of the data based on systematic fit assessment procedures, and to 

estimate relations between latent constructs corrected for measurement errors. These advances were 

so major that it is not surprising that within a decade CFA almost completely supplanted classical 

approaches such as exploratory factor analyses (EFA). However, CFA relies on the highly restrictive 

Independent Cluster Model (ICM), in which cross-loadings between items and non-target factors are 

assumed to be exactly zero. It was recently observed that instruments assessing multidimensional 

constructs seldom manage to achieve reasonable fit within the ICM-CFA framework (Marsh, Lüdtke 

et al., 2010; Marsh et al., 2009; McCrae, Zonderman, Costa, Bond, & Paunonen, 1996). In answer to 

this observation, more flexible approaches have been proposed (Asparouhov & Muthén, 2009; Morin, 

Marsh, & Nagengast, 2013), or “rediscovered” (Reise, 2012), such as ESEM, bifactor models, and 

their combination. These approaches, described below, arguably provide a better representation of 

complex multidimensional structures without relying on unrealistic ICM assumptions. In the 

upcoming pages, we argue that ICM-CFA models typically fail to account for at least two sources of 
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construct-relevant psychometric multidimensionality, and may thus produce biased parameter 

estimates as a result of this limitation. Before presenting these two sources, it is important to 

differentiate substantive multidimensionality, which refers to instruments that have been specifically 

designed to assess multiple dimensions with separate items tapping into each of these dimensions, and 

psychometric multidimensionality, which refers to the idea that the items forming an instrument may 

be associated with more than one source of true score variance (i.e., be associated with more than one 

content area). In many multidimensional instruments, two sources of construct-relevant psychometric 

multidimensionality are likely to be present and related to: (a) the hierarchical nature of the constructs 

being assessed whereby all items may be expected to present a significant level of association with 

their own subscales (e.g., peer self-concept, verbal intelligence, or attention difficulties), as well as 

hierarchically-superior constructs (e.g., global self-esteem, global intelligence, or attention 

deficit/hyperactivity disorders); (b) the fallible nature of indicators typically used to measure 

psychological and educational constructs, which tends to be reinforced in instruments assessing 

conceptually-related and partially overlapping domains (i.e., such as peer and parent self-concepts, 

verbal intelligence and memory, or attention difficulty and impulsivity). We focus on these two 

sources of construct-relevant psychometric multidimensionality whereby items may present 

associations with multiple hierarchically-superior or substantively-related constructs. Additionally, as 

shown in our first study, construct-irrelevant psychometric multidimensionality (due to item wording, 

method effects, etc.) may also be present and can easily be controlled through the inclusion of method 

factors (Eid et al., 2008; Marsh, Scalas, & Nagengast, 2010). 

Psychometric Multidimensionality due to the Co-Existence of Global and Specific Constructs 

A first source of psychometric multidimensionality is related to the possibility that the items 

used to assess the multiple dimensions included in an instrument could reflect multiple hierarchically-

organized constructs: Their own specific subscale, as well as more global constructs. A classical 

solution to this issue is provided by hierarchical (i.e., higher-order) CFA. In hierarchical CFA, each 

item is specified as loading on its specific subscale (a first-order factor), and each first-order factor is 

specified as loading on a higher-order factor (e.g., Rindskopf & Rose, 1988).  

Bifactor models provide an alternative to hierarchical models (Chen, West, & Sousa, 2006; 
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Holzinger & Swineford, 1937; Reise, Moore, & Haviland, 2010). For illustrative purposes, an ICM-

CFA, a hierarchical-CFA, and a bifactor-CFA model are presented on the left side of Figure 1. A 

bifactor model is based on the assumption that a f-factor solution exists for a set of n items with one 

Global (G) factor and f-1 Specific (S) factors (also called group factors). The items’ loadings on the 

G-factor and on one of f-1 substantive S-factors are estimated while other loadings are constrained to 

be zero; although these models may also incorporate additional method factors. All factors are set to 

be orthogonal (i.e., the correlations between the S-factors and between the S-factors and the G-factor 

are all constrained to be zero). This model partitions the total covariance among the items into a G 

component underlying all items, and f-1 S components explaining the residual covariance not 

explained by the G-factor. Bifactor models are well established in research on intelligence (e.g., 

Holzinger & Swineford, 1937; Gignac & Watkins, 2013), and have also been successfully applied to 

noncognitive constructs such as quality of life (e.g., Reise, Morizot, & Hays, 2007), attention 

disorders (e.g., Caci, Morin, & Tran, 2013; Morin, Tran, & Caci, 2013), or mood and anxiety 

disorders (e.g., Gignac, Palmer, & Stough, 2007; Simms, Grös, Watson, & O’Hara, 2008). A bifactor 

model directly tests whether a global construct, reflected through the G-factor, exists as a unitary 

dimension underlying the answers to all items and co-exists with multiple more specific facets (S-

factors) defined by the part of the items that is unexplained by the G-factor. Thus, both hierarchical 

and bifactor models assume that there exists a global construct underlying answers to all items 

included in an instrument, whereas ICM-CFA simply assumes distinct facets without a common core.  

Similarities have been noted between hierarchical and bifactor models, which both test for the 

presence of global and specific dimensions underlying the responses to multiple items. These 

similarities are related to the possibility of applying a Schmid and Leiman (1957) transformation 

procedure (SLP) to a hierarchical model in order to convert it to a bifactor approximation. However, 

the SLP makes obvious that hierarchical models implicitly rely on far more stringent assumptions 

than bifactor models (Chen et al., 2006; Jenrich & Bentler, 2011; Reise, 2012). In particular, when a 

SLP is applied to a hierarchical model, the relation between an item and the G-factor from the bifactor 

approximation is represented as the indirect effect of the higher-order factor on the item, as 

‘mediated’ by the first-order factor. More precisely, each item’s first-order factor loading is multiplied 
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by the loading of this first-order factor on the second-order factor, which in turns yields the loadings 

of this item on the SLP-estimated G-factor. The second term in this multiplication is thus a constant as 

far as the items associated with a single first-order factor are concerned. Similarly, the relations 

between the items and the SLP-estimated S-factors are reflected by the product of their loadings on 

their first-order factor by the squared root of the disturbance of this first-order factor (corresponding 

to the regression path associated with the unique part of the first-order factor). This second term is 

also a constant and reflects the unique part of the first-order factor that remains unexplained by the 

higher-order factor (for worked examples, see Gignac, 2007; Jenrich & Bentler, 2011; Reise, 2012). 

The SLP makes explicit that higher-order models rely on stringent proportionality constraints: Each 

item’s association with the SLP G-factor and S-factors are obtained by multiplying their first-order 

loadings by constants. These constraints imply that the ratio of G-factor to S-factors loadings for all 

items associated with the same first-order dimension will be exactly the same. Although these 

constraints may hold under specific conditions, they are unlikely to hold in real-world settings 

involving complex instruments (Reise, 2012; Yung, Thissen, & McLeod, 1999). These constraints are 

one reason why true bifactor models tend to provide a much better fit to the data than hierarchical 

models (Brunner, Nagy, & Wilhelm, 2012; Chen et al., 2006; Reise, 2012; but also see Murray & 

Johnson, 2013). Furthermore, Jenrich and Bentler (2011) demonstrated that, when the population 

model underlying the data corresponds to a bifactor model without meeting the SLP proportionality 

constraints, the SLP generally fails to recover the underlying bifactor structure of the data.  

Psychometric Multidimensionality due to the Fallible Nature of Indicators 

A second source of construct-relevant psychometric multidimensionality that is typically 

neglected within the traditional ICM-CFA framework is that items are very seldom perfectly pure 

indicators of the constructs they are purported to measure. Rather, they tend to be fallible indicators 

including at least some degree of relevant association with constructs other than the main constructs 

that they are designed to measure. More precisely, items are known to incorporate a part of random 

measurement error, which is traditionally assessed as part of reliability analyses and modeled as part 

of the items’ uniquenesses in EFA or CFA. However, items also tend to present some degree of 

systematic association with other constructs (a form of measurement error usually assessed as part of 
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validity analyses) that is typically expressed through cross-loadings in EFA but is constrained to be 

zero in ICM-CFA. Although not limited to this context, this phenomenon tends to be reinforced when 

the instruments includes multiple factors related to conceptually-related and partially overlapping 

domains. Particularly in these contexts, ICM assumptions might be unrealistically restrictive. Still, no 

matter the content of the instrument that is considered, most indicators are likely to be imperfect to 

some extent and thus present at least some level of systematic associations with other constructs.  

This reality is made worse when the instrument also includes items designed to directly assess 

hierarchically-superior constructs (e.g., global self-esteem, intelligence, or externalizing behaviors) 

usually specified as separate subscales which should also logically present direct associations with 

hierarchically inferior items/subscales (e.g., math self-concept, memory, impulsivity). In the absence 

of a bifactor model specifically taking hierarchical relations into account, cross-loadings are to be 

expected as a way to reflect these hierarchically-superior constructs. However, even in a bifactor 

model taking hierarchically-superior constructs into account, cross-loadings can still be expected due 

to the fallibility of indicators, particularly in the presence of partially overlapping domains (e.g., peer 

and parent self-concepts, verbal intelligence and memory, impulsivity and attention difficulties).  

When real cross-loadings are forced to be zero in ICM-CFA, the only way for them to be 

expressed is through the inflation of the estimated factor correlations. Indeed, even when the ICM-

CFA model fits well in the first place (see Marsh, Liem, Martin, Morin, & Nagengast, 2011; Marsh, 

Nagengast et al., 2011), factor correlations will typically be at least somewhat inflated unless all 

cross-loadings are close to zero. Interestingly, simulations studies showed that EFA usually results in 

more exact estimates of the true population values for the latent factor correlations than CFA 

(Asparouhov & Muthén, 2009; Marsh, Lüdtke, Nagengast, Morin, & Von Davier, 2013; Schmitt & 

Sass, 2011). Even when the true population model corresponds to ICM-CFA assumptions, EFA still 

results in unbiased parameter estimates. These observations seem to argue in favor of EFA as 

providing a more realistic and flexible measurement model for multidimensional instruments. 

Unfortunately, EFA has been superseded by the methodological advances associated with CFA/SEM 

and by the erroneous assumption that EFA was unsuitable to confirmatory studies. However:  

This assumption still serves to camouflage the fact that the critical difference between EFA and 
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CFA is that all cross loadings are freely estimated in EFA. Due to this free estimation of all cross 

loadings, EFA is clearly more naturally suited to exploration than CFA. However, statistically, 

nothing precludes the use of EFA for confirmatory purposes (Morin, Marsh et al., 2013, p. 396).  

Asparouhov and Muthén (2009) recently developed ESEM, which allows for the integration 

of EFA within the overarching SEM framework, making methodological advances typically reserved 

to CFA/SEM available for EFA measurement models (Marsh, Morin, Parker, & Kaur, 2014; Marsh et 

al., 2009; Morin, Marsh et al., 2013). Further, when ESEM is estimated with target rotation, it 

becomes possible to specify a priori hypotheses regarding the expected factor structure and thus to use 

ESEM for purely confirmatory purposes (Asparouhov & Muthén, 2009; Browne, 2001).  

An Integrated Test of Multidimensionality 

A comprehensive test of the structure of many multidimensional measures apparently requires 

the consideration of the two sources of construct-relevant psychometric multidimensionality described 

above. The assessment of a hierarchically-organized construct, especially when coupled with the 

inclusion of subscales specifically designed to represent the global construct of interest, would 

typically argue in favor of bifactor or hierarchical models. However, both bifactor and hierarchical 

models typically neglect item cross-loadings due to the fallible nature of indicators as providing a 

reflection of one, and only one, construct, which are likely to be expressed through the inflation of the 

variance attributed to the G-factor (e.g., Murray, & Johnson, 2013). These expected cross-loadings 

thus apparently argue in favor of ESEM. However, a first-order ESEM model will likely ignore the 

presence of hierarchically-superior constructs, which will end up being expressed through inflated 

cross-loadings. In sum, it appears that a bifactor-ESEM or a hierarchical-ESEM may be needed to 

fully capture the hierarchical and multidimensional nature of instruments incorporating both sources 

of construct-relevant psychometric multidimensionality.  

Unfortunately, it has typically not been possible to combine these two methodological 

approaches into a single model. For instance, hierarchical models have generally been specified 

within the CFA framework. The estimation of hierarchical ESEM models needs to rely on suboptimal 

two-step procedures where correlations among the first-order factors are used to estimate the higher-

order factor. This leads to higher-order factors that are a simple re-expression (an equivalent model) 
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of the first-order correlations (for recent illustrations, see Meleddu, Guicciardi, Scalas, & Fada, 2012; 

Reise, 2012). Similarly, the estimation of bifactor models has typically been limited to CFA. 

However, recent developments have made these combinations possible. Morin, Marsh et al. 

(2013; also see Marsh et al., 2014; Marsh, Nagengast, & Morin, 2013) recently proposed ESEM-

Within-CFA, allowing a specific first-order ESEM solution to be re-expressed using CFA. This 

method allows for tests of hierarchical models where the first-order structure replicates the ESEM 

solution (with the same constraints, degrees of freedom, fit, and parameter estimates), while allowing 

for the estimation of a higher-order factor defined from first-order ESEM factors. Similarly, bifactor 

rotations (Jennrich & Bentler, 2011, 2012), including a bifactor target rotation that can be used to 

express clear a priori hypotheses (Reise, 2012; Reise, Moore, & Maydeu-Olivares, 2011), have 

recently been developed within the EFA/ESEM framework. This development allows for the direct 

estimation of true bifactor-ESEM models. For illustrative purposes, an ESEM, a hierarchical-ESEM, 

and a bifactor-ESEM are presented on the right side of Figure 1. These developments provide an 

overarching framework for the systematic investigation of these two sources of construct-relevant 

psychometric multidimensionality likely to be present in many complex psychometric measures.  

To illustrate this integrative framework, we rely on two studies. The first study provides an 

applied illustration of the substantive relevance of the various models considered here using a real 

data set of German children who completed the SDQ-I (Marsh, 1990). After discussing why both 

sources of construct-relevant multidimensionality are likely to be present in this instrument, we 

illustrate the use of the proposed framework, and further show the flexibility of bifactor-ESEM by 

presenting detailed tests of measurement invariance of the final model across gender. Although we 

provide the input codes used in these analyses at the end of the online supplements, they may be too 

complex to properly serve as pedagogical material for readers less familiar with Mplus. We thus 

conducted a second study using a simpler simulated data set and a complete set of pedagogically-

annotated input files, including those used to simulate the data in the first place so as to provide 

readers with the data set for practice purposes. Furthermore, this second study provides a more 

extensive set of illustrations, including multiple group tests of measurement invariance, Multiple 

Indicator Multiple Causes (MIMIC) models, as well as a predictive mediation model.  
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Study 1: Substantive Illustration 

In this study, we contrast alternative representations of the SDQ-I (ICM-CFA, hierarchical-

CFA, bifactor-CFA, ESEM, hierarchical-ESEM, and bifactor-ESEM) to illustrate how these methods 

allow us to achieve a clearer understanding of the sources of construct-relevant multidimensionality 

potentially at play in this instrument. Although our goal is mainly to illustrate this methodological 

framework, we reinforce that no analysis should be conducted in disconnection from substantive 

theory and expectations. Thus, we do not argue that this framework should be blindly applied to the 

study of any psychometric measure. Rather, we argue that this framework would bring valuable 

information to the analysis of psychometric measures for which previous results and substantive 

theory suggest that sources of construct-relevant multidimensionality might be present. With this in 

mind, we selected the SDQ-I, a well-known instrument (Byrne, 1996; Marsh, 1990, 2007) likely to 

include both sources of construct-relevant psychometric multidimensionality.  

The SDQ-I is based on Shavelson, Hubner, and Stanton (1976) seminal hierarchical and 

multidimensional model of self-concept. This hierarchical structure is further reinforced in the SDQ-I 

through the inclusion of scales directly assessing hierarchically superior constructs (i.e., global self-

esteem and general academic self-concept). Although previous studies failed to support a strong 

higher-order factor structure for multidimensional self-concept measures (e.g., Abu-Hilal & Aal-

Hussain, 1997; Marsh & Hocevar, 1985), Marsh (1987) showed that global self-concept defined as a 

higher-order factor and global self-concept (i.e., global self-esteem) directly assessed from a separate 

scale were highly correlated with one another. Similarly, general academic self-concept was found to 

share high positive relations with math and verbal self-concepts even though these two self-concepts 

are almost uncorrelated – or even negatively related – to one another (Möller, Pohlmann, Köller, & 

Marsh, 2009). In fact, Brunner et al. (Brunner, Keller, Hornung, Reichert, & Martin, 2009; Brunner, 

Lüdtke, & Trautwein, 2008; Brunner et al., 2010) showed that a bifactor model provided better fit to 

the data than a corresponding CFA model when applied to academic self-concept measures. These 

results clearly support the interest of testing a bifactor representation of the SDQ-I to model construct-

relevant multidimensionality due to the presence of hierarchically-superior constructs.  

However, the SDQ-I is also inherently multidimensional and taps into conceptually-related 
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and partially overlapping constructs (e.g., physical appearance and physical abilty self-concept). 

Although ICM-CFA correlations between the SDQ-I factors tend to remain reasonably small 

(typically ≤ .50; e.g., Arens, Yeung, Craven, & Hasselhorn, 2013; Marsh & Ayotte, 2003), this does 

not mean that they are not somehow inflated due to the elimination of potentially meaningful cross-

loadings. Indeed, most previous EFA investigations of the SDQ-I revealed multiple cross-loadings 

(Watkins & Akande, 1992; Watkins & Dong, 1994; Watkins, Juhasz, Walker, & Janvlaitiene, 1995). 

Morin and Maïano (2011) recently applied ESEM to the Physical Self Inventory (PSI), an instrument 

assessing multidimensional physical self-conceptions. Their results showed the superiority of ESEM 

over ICM-CFA, and revealed multiple cross-loadings, most of which proved to be substantively 

meaningful. These results support the interest of applying ESEM to the SDQ-I to model construct-

relevant multidimensionality due to the fallible nature of indicators.  

Method 

The present study relies on a sample of German students (N = 1957; 50.5% boys) attending 

grades 3 to 6 in mixed-gender public schools. These students are aged between 7 and15 years (M = 

10.66; SD = 1.30), and all obtained parental consent for participation in the study. The German 

version of the SDQ-I (Arens et al., 2013) was administered to all participants during regular school 

lessons following standardized administration guidelines relying on a read-aloud procedure (Byrne, 

1996; Marsh, 1990). The German SDQ-I consist of 11 subscales: physical appearance (9 items; α = 

.884), physical ability (9 items; α =.894 ), peer relations (9 items; α = .861), parent relations (9 items; 

α =.861 ), math competence (5 items; α =.928 ), math affect (5 items; α = .943), German competence 

(5 items; α = .907), German affect (5 items; α = .919), general academic competence (5 items; α = 

.827), general academic affect (5 items; α = .858), and global self-esteem (10 items; α = .853). The 

latter directly assesses global self-concept, whereas the general academic competence and affect 

subscales both assess academic self-concept across all school subjects. Each of the SDQ-I items are 

rated on a 5-point Likert scale (false, mostly false, sometimes true/sometimes false, mostly true, true). 

A complete list of the items included in the English and German SDQ-I is available at: 

http://www.acu.edu.au/ippe/. 

Analyses 
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Alternative Models. All analyses were conducted with Mplus 7.11 (Muthén & Muthén, 1998-

2013), based on the robust maximum likelihood (MLR) estimator providing standard errors and fit 

indices that are robust to the Likert nature of the items and violations of normality assumptions. Full 

Information robust Maximum Likelihood (FIML) estimation was used to handle the small amount of 

missing data at the item level (M = 0.646%; Enders, 2010; Graham, 2009). We first contrasted ICM-

CFA, hierarchical-CFA (H-CFA), bifactor-CFA (B-CFA), ESEM, hierarchical ESEM (H-ESEM), and 

bifactor-ESEM (B-ESEM) representations of the underlying structure of the answers provided to the 

full SDQ-I (see Figure 1 for simplified illustrations of these models). In the ICM-CFA model, each 

item was only allowed to load on the factor it was assumed to measure and no cross-loadings on other 

self-concept factors were allowed. This model included 11 correlated factors representing the 

previously described SDQ-I subscales. In the H-CFA model, these 11 factors were specified as being 

related to a single higher-order CFA factor, with no residual correlations specified between the 11 

first-order factors. In the B-CFA model, all items were allowed to simultaneously load on one G-

factor and on 11 S-factors corresponding to the a priori self-concept factors measured by the SDQ-I, 

with no cross-loadings allowed across S-factors. The G-factor and all S-factors were specified as 

orthogonal in order to ensure the interpretability of the solution in line with bifactor assumptions that 

the S-factors reflect the part of the items’ variance that is not explained by the G-factor, while the G-

factor reflects the part of the items variance that is shared across all items (e.g., Chen et al., 2006; 

Reise, 2012). Then, these models were first contrasted with an 11-factor ESEM representation of the 

SDQ-I estimated based on oblique target rotation (Asparouhov & Muthén, 2009; Browne, 2001). 

Target rotation seemed particularly appropriate as it allows for the pre-specification of target and non-

target factor loadings in a confirmatory manner. According to the most common specification of 

target rotation, all cross-loadings were “targeted” to be close to zero, while all of the main loadings 

were freely estimated. An H-ESEM model was then estimated from this model using ESEM-Within-

CFA (Morin, Marsh et al., 2013). In this model, all 11 first-order factors were specified as related to a 

single higher-order factor, with no residual correlations between the 11 first-order factors. Finally, a 

B-ESEM model was estimated in line with typical bifactor assumptions using orthogonal bi-factor 

target rotation (Reise, 2012; Reise et al., 2011), which ensured comparability with the B-CFA1. In this 
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model, all items were allowed to define a G-factor, while the 11 S-factors were defined from the same 

pattern of target and non-target factor loadings that was used in the first-order ESEM solution.  

Construct-Irrelevant Multidimensionality. The SDQ-I includes a total of 12 negatively 

worded items (items 6, 12, 17, 21, 23, 30, 33, 37, 47, 61, 65, and 75, italicized in Table 1), which 

were reversed coded prior to the analyses to facilitate interpretation. To take into account the 

methodological artifact due to the wording of these items (i.e., construct-irrelevant psychometric 

multidimensionality), all models included a method factor underlying all negatively-worded items 

(e.g., Marsh, Scalas et al., 2010). In line with typical specifications of method factors and to ensure 

that all models remained comparable, this method factor was modeled as an orthogonal CFA factor 

defined strictly through the negatively-worded items. Furthermore, the items used to assess the 

various academic subscales are strictly parallel (e.g., “I am good at Math”; “I am good at German”; “I 

am good at all school subjects”). Thus, a priori correlated uniquenesses among matching indicators of 

the academic subscales were also included to the models. This inclusion reflects the idea that the 

unique variance of these items (i.e., uniquenesses, reflecting construct-irrelevant sources of influences 

and random error) is likely to be shared among items with parallel wordings (i.e., due to convergent 

sources of construct-irrelevant influence; Marsh, 2007; Marsh, Abduljabbar et al., 2013).  

Generally, the inclusion of ex post facto correlated uniquenesses as a way to improve model 

fit should be avoided and has been labeled as a “disaster” for research (Schweizer, 2012, p.1). Even 

when legitimate a priori controls are required (such as in the present study), method factors should be 

preferred to correlated uniquenesses. As noted by Schweizer (2012), method factors explicitly 

estimate construct-irrelevant sources of variance, whereas correlated uniquenesses simply partial them 

out – bringing no new information to the model. In this study, it was not realistic to include ten 

additional method factors reflecting the parallel wording of the items used to assess the academic 

subscales (i.e., five items per academic competence subscale, all with parallel wording, and five items 

per academic affect subscale, also with parallel wording). However, parallel wording is more 

naturally suited to correlated uniquenesses than negative wording. Furthermore, this provides an 

occasion to illustrate the implementation of both forms of control in the proposed framework.  

The control of these sources of construct-irrelevant psychometric multidimensionality is 
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particularly important in the application of the integrative framework proposed here. Indeed, Murray 

and Johnson (2013) recently showed that bifactor models (the same argument applies to ESEM) are 

particularly efficient at absorbing unmodeled complexity (e.g., correlated uniquenesses, cross-

loadings), which may in turn inflate the fit of these models relative to models not taking this 

complexity into account. The inclusion of these methodological controls of a priori method effects, as 

well as the comparison of ESEM and CFA, and bifactor and non-bifactor models, allow us to control 

for this possibility. All models including these a priori methodological controls systematically 

provided a better fit to the data than models without them. However, including these controls had no 

impact on the results or the final model selection (see Table S1 in the online supplements).  

Measurement Invariance. The measurement invariance across gender of the final retained 

model was then investigated (Meredith, 1993; Millsap, 2011). In the least restrictive model 

(configural invariance), the same pattern of associations between items and factors, and the same 

number of factors, were estimated for males and females with no added equality constraints. A second 

model in which all factor loadings (and cross-loadings) on the substantive and methodological factors 

were constrained to be invariant across groups (weak measurement invariance) was then estimated. 

This model is an essential prerequisite to any form of gender-based comparison based on the SDQ-I. 

In the third step, a model where both the factor loadings and items’ intercepts were constrained to be 

invariant across groups (strong measurement invariance) was estimated. This model represents a 

prerequisite to valid latent means comparisons across groups. A fourth model in which the factor 

loadings, items’ intercepts and items’ uniquenesses were constrained to be invariant across groups 

(strict measurement invariance) was estimated. Although not a requirement for the present study 

where comparisons are based on latent variables, this steps is an essential prerequisite to gender-based 

comparisons based on manifest (aggregated) scale scores. Then, to ensure that the measurement 

model was indeed fully invariant across groups, we also verified whether the correlated uniquenesses 

included between the parallel-worded items for the academic subscales were also invariant across 

groups. Two additional steps were tested in which further invariance constraints were specified at the 

level of the factor variances/covariances and latent means in order to further investigate possible 

gender-based differences in the association between self-concepts facets, variability, and latent means. 
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For more details, the reader is referred to Morin, Marsh et al. (2013) and Millsap (2011).  

Model Evaluation. Given the known oversensitivity of the chi-square test of exact fit and of 

chi-square differences tests to sample size and minor model misspecifications (e.g., Marsh, Hau, & 

Grayson, 2005), we relied on common goodness-of-fit indices and information criteria to describe the 

fit of the alternative models: the comparative fit index (CFI; Bentler, 1990), the Tucker-Lewis index 

(TLI; Tucker & Lewis, 1973), the root mean square error of approximation (RMSEA; Steiger, 1990) 

with its confidence interval, the Akaike Information Criteria (AIC; Akaike, 1987), the Constant AIC 

(CAIC; Bozdogan, 1987), the Bayesian Information Criteria (BIC; Schwartz, 1978), and the sample-

size adjusted BIC (ABIC; Sclove, 1987). According to typical interpretation guidelines (e.g., Browne 

& Cudeck, 1993; Hu & Bentler, 1999; Marsh, Hau, & Wen, 2004; Marsh et al., 2005), values greater 

than .90 and .95 for the CFI and TLI are considered to be respectively indicative of adequate and 

excellent fit to the data, while values smaller than .08 or .06 for the RMSEA support respectively 

acceptable and excellent model fit. Similarly, in comparing nested models forming, for instance, the 

sequence of invariance tests, common guidelines (Chen, 2007; Cheung & Rensvold, 2002) suggest 

that models can be seen as providing a similar degree of fit to the data (thus supporting the adequacy 

of invariance constraints) as long as decreases in CFI remain under .01 and increases in RMSEA 

remain under .015 between less restrictive and more restrictive models. It has also been suggested to 

complement this information by the examination of changes in TLI (with guidelines similar to those 

for CFI) that may be useful with complex models due to the incorporation of a penalty for parsimony 

(Marsh et al., 2009; Morin, Marsh et al., 2013). As articulated by Cheung and Lau (2012, p. 169) 

“One pitfall of this approach is that the ΔCFI has no known sampling distribution and, hence, is not 

subject to any significance testing. These cutoff values may thus be criticized as arbitrary.” Although 

the information criteria (AIC, CAIC, BIC, ABIC) do not, in and of themselves, describe the fit of a 

model, a lower value reflects a better fit to the data of one model in comparison to a model with 

higher values so that in a set of nested models the best fitting model is the one with the lowest value. 

It is important to note that these descriptive guidelines have so far been established for CFA. 

Although previous ESEM applications have generally relied on similar criteria (e.g., Marsh et al., 

2009; Morin, Marsh et al., 2013; also see Grimm, Steele, Ram, & Nesselroade, 2013), their adequacy 
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for ESEM still has to be more thoroughly investigated. In this regard, it has been suggested that 

indicators including a correction for parsimony (i.e., TLI, RMSEA, AIC, CAIC, BIC, ABIC) might be 

particularly important in ESEM given that the total number of estimated parameters is typically much 

larger than in CFA (Marsh, Lüdtke et al., 2010; Marsh et al., 2009; Morin, Marsh et al., 2013). 

Furthermore, although the efficacy of the proposed descriptive guidelines for the comparison of 

nested invariance models has been validated in CFA for tests of weak, strong, and strict measurement 

invariance (Chen, 2007; Cheung & Rensvold, 2002), they appear to be of questionable efficacy for 

tests of latent mean invariance (Fan & Sivo, 2009). In addition, these indices still appear to show 

sensitivity to design conditions and model complexity (e.g., Fan & Sivo, 2005, 2007), calling into 

question the generalizability of these guidelines outside of the conditions considered in previous 

simulation studies and, importantly, the CFA framework. Although information criteria (AIC, CAIC, 

BIC, ABIC) appear to represent a less “subjective” alternative, their known dependency to sample 

size creates a confounding: Given a sufficiently large sample size, these indicators will always support 

more complex alternatives (see Marsh et al., 2005). In sum, all of these interpretation guidelines (be 

they related to goodness-of-fit indices or information criteria) should not be treated as “golden rules” 

or used for inferential purposes, but only as rough guidelines for descriptive model evaluation and 

comparison that should also take into account parameters estimates, statistical conformity and 

theoretical adequacy (Fan & Sivo, 2009; Marsh et al., 2004, 2005). This is also the approach generally 

advocated in ESEM (e.g., Grimm et al., 2013; Marsh et al., 2009; Morin, Marsh et al., 2013).  

Results 

Table 1 (top section) presents the goodness-of-fit indices and information criteria associated 

with the models. The ICM-CFA solution (CFI = .921; TLI = .916; RMSEA = .033) provides an 

acceptable degree of fit to the data, whereas both the H-CFA and the B-CFA appear to be suboptimal 

in terms of fit (CFI and TLI < .90 and higher values on the information criteria). The ESEM solution 

provides an acceptable (TLI = .947) to excellent (CFI = .963; RMSEA = .026) degree of fit to the 

data, and an apparently better representation of the data than the ICM-CFA model according to 

improvement in fit indices and a decrease in the values of the AIC and ABIC. The B-ESEM model 

provides an excellent degree of fit to the data according to all indices (CFI = .970; TLI = .956; 
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RMSEA = .024), and a slightly better level of fit to the data and lower values for the information 

criteria than all other models. The more rigid H-ESEM does not fit the data as well as either ESEM or 

the B-ESEM (higher information criteria, lower fit indices). Based on this information, the B-ESEM 

model appears to provide the best representation of the data. However, as mentioned before, this 

information on model fit should be considered as a rough guideline only, and the final model selection 

should remain conditional on a detailed examination of the parameter estimates and theoretical 

conformity of the various models. Thus, before moving to a description of the B-ESEM model, we 

first start with a comparison of the ICM-CFA and ESEM to investigate the presence of construct-

relevant psychometric multidimensionality due to the fallible nature of indicators and the presence of 

conceptually-related constructs. We then contrast the ESEM and B-ESEM to investigate construct-

relevant psychometric multidimensionality due to hierarchically-superior constructs. 

ESEM versus CFA. The ICM-CFA and ESEM solutions differ in their factor correlations 

(see Table 2) with much lower factor correlations for ESEM (|r| = .006 to r = .648, M = .237) than 

ICM-CFA (|r| = .106 to r = .815, M = .376). ESEM thus results in a clearer differentiation between the 

self-concept factors than ICM-CFA. Interestingly, simulation studies showed that ESEM tends to 

provide a better representation of the true correlations between factors (Asparouhov & Muthén, 2009; 

Marsh, Lüdtke et al., 2013; Schmitt & Sass, 2011), leading to the recommendation that ESEM should 

be retained when the estimated factor correlations are substantially reduced in comparison to ICM-

CFA (Marsh et al., 2009; Morin, Marsh et al., 2013). Here, the highest correlations involve either the 

global self-esteem factor –supporting the need for a bifactor representation – or associations between 

conceptually close constructs (such as peer and appearance self-concepts, or math competence and 

affect) – apparently supporting the theoretical adequacy of ESEM. Parameter estimates from these 

models are reported in the online supplements (Table S2).  

An examination of the ESEM parameter estimates reveals well-defined factors due to 

substantial target factor loadings (varying from |λ| = .014 to .907; M = .606). Furthermore, the more 

hierarchically superior constructs (global self-esteem: target |λ| = .239 to .668, M = .491; general 

academic competence: target |λ| = .014 to .382, M = .286; general academic affect: target |λ| == .211 
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to .605, M = .503) tend to be less well defined than the other factors (target |λ| = .350 to .917, M = 

.664), supporting the need for a bifactor model. Similarly, as expected, multiple non-target cross-

loadings are also present, providing additional support for the ESEM solution. The majority of the 

more substantial non-target cross-loadings (> .200) involve hierarchically-superior (global self-

esteem, and general academic competence or affect) or conceptually-related constructs (e.g., peer and 

appearance self-concepts); and are particularly pronounced between the academic affect and 

competence subscales associated with the same domain. These results provide clear evidence that 

both sources of construct-relevant psychometric multidimensionality are present in the SDQ-I, 

supporting the need to rely on ESEM and suggesting the appropriateness of exploring B-ESEM.  

ESEM versus B-ESEM. As previously noted, B-ESEM provides a slightly better fit to the 

data (according to both fit indices and lower values for the information criteria) than ESEM. The 

parameter estimates from this model are reported in Table 3. The B-ESEM solution shows that the G-

Factor is well-defined by the presence of strong and significant target loadings from most of the SDQ-

I items (|λ| =.118 to .691, M = .444), which is impressive for a G-factor defined by 76 items designed 

to tap into different domains. In particular, the items designed to specifically assess global self-esteem 

all present elevated target loadings on this G-factor (|λ| =.320 to .610, M = .490). Over and above this 

G-factor, the S-factors related to SDQ-I subscales theoretically located at the lower level of the self-

concept hierarchy are also well-defined through substantial target loadings (|λ| =.307 to .809, M = 

.567), suggesting that they do indeed tap into relevant specificity and add information to the self-

concept G-factor. In contrast, and supporting the appropriateness of a B-ESEM representation of the 

data, the items associated with most of the hierarchically superior subscales apparently present either 

no (general academic competence: target |λ| = -.011. to .099, M = .066, all non-significant at p ≤ .05) 

or low levels (global self-esteem: target |λ| =.101 to .411, M = .310; general academic affect: target |λ| 

= .174 to .418, M = .354) of meaningful residual specificity once the G-factor is taken into account. 

However, at least in regard to the global self-esteem and general academic affect subscales the target 

loadings on the S-Factors (14 out of 15 possible loadings) remain significant, supporting the need to 

control for this content specificity in the model, which may reflect in part the presence of additional 
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self-concept domains not covered in the SDQ-I (e.g., arts, biology, spirituality; Marsh, 2007; Vispoel, 

1995). This explanation is not sufficient to explain why the target loadings are so much weaker on the 

general academic competence S-factor than the global self-esteem and general academic affect S-

factors. A possible explanation for this difference appears related to the fact that the global academic 

competence items present more numerous, and stronger, cross-loadings involving domain-specific S-

factors than the items related to global self-esteem and general academic affect (also see subsequent 

discussion of cross-loadings). It would be possible for applied researchers to pursue a post hoc 

modification of this model by taking out the general academic competence S-factor and allowing 

global academic competence items to contribute solely to the G-factor. This alternative representation 

would be in line with Brunner et al. (2008, 2009, 2010) “Nested Marsh/Shavelson model”.2  

 Further examination of the B-ESEM solution reveals that, outside of the academic area, few 

items present meaningful non-target cross-loadings. Some of these cross-loadings support previous 

results showing partial conceptual overlap between physical appearance on the one hand and peer 

self-concept or physical ability on the other hand (Arens et al., 2013; Marsh, 2007; Marsh & Ayotte, 

2003). For example, some physical appearance items show substantial cross-loadings on the physical 

ability (e.g., Item 46: “I have a good looking body”; cross-loading = .219) or peer self-concept (e.g., 

Item 38: “Other kids think I am good looking”; cross-loading = .281) scales. Similarly, one peer self-

concept item also displays a substantial cross-loading on the physical appearance scale (Item 36: “I 

am easy to like”; cross-loading = .232). However, non-target cross-loadings appear more pronounced 

within the academic area. Thus, multiple items from the competence subscales present small to 

moderate cross-loadings on their affect counterparts, and vice-versa. For instance, items of math 

competence reveal cross-loadings on math affect (|λ| =.230 and .347, M = .314), and items of math 

affect demonstrate cross-loadings on math competence (|λ| =.253 and .298; M = .275), while the target 

loadings still suggest that these factors are properly defined (math competence: |λ| =.557 to .630; M = 

.599; math affect: |λ| = .644 to .763; M = .689). Similar results are observable for the German affect 

and competence subscales, as well as for the general academic competence and affect subscales, 

although these more general factors are not as well-defined as the domain-specific math and German 
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subscales. These results confirm the distinction between competence and affect components in the 

academic area, but also show that the items still present a high level of specificity over and above 

their competence or affect nature. This explains the previously reported elevated correlations between 

the affect and competence subscales associated with a single domain (Arens, Yeung, Craven, & 

Hasselhorn, 2011; Marsh & Ayotte, 2003). No such pattern of non-target cross-loadings between 

competence and affect factors can be observed across the German and math domains supporting the 

strong differentiation of academic self-concept into math and verbal domains (Möller et al., 2009). 

Furthermore, the items forming the general academic competence and affect factors also present 

substantial non-target cross-loadings on their German and math counterparts, a result in line with the 

hierarchical nature of self-concept.  

Measurement Invariance. We now turn to tests of invariance across gender of the final B-

ESEM model (see Table 1). The model of configural invariance provides an acceptable fit to the data 

(CFI = .960; TLI = .942; RMSEA = .028). From this model, invariance constraints across gender were 

progressively added to the factor loadings (weak invariance), items’ intercepts (strong invariance), 

items’ uniqueness (strict invariance), correlated uniquenesses for parallel-worded items, latent 

variances and covariances, and latent means. None of these constraints resulted in a decrease in model 

fit exceeding the recommended cut-off scores for the fit indices (ΔCFI and ΔTLI < .01; ΔRMSEA < 

.015), supporting the invariance of the B-ESEM factor structure across gender. Invariance is also 

generally supported by the information criteria, with the CAIC and BIC showing consistent decreases 

(or at least very low increases) up to the inclusion of invariance constraints on the latent variances and 

covariances. A more careful examination reveals a single major difference between the conclusions 

that would have been reached through an examination of the changes in fit indices (suggesting 

complete measurement invariance), and the conclusions that would have been reached through an 

examination of the information criteria. Indeed, the information criteria all increased when invariance 

constraints were imposed on the items’ intercepts, thus suggesting that a solution of partial invariance 

of items’ intercepts could be investigated; something that we illustrate in the next study. This 

reinforces the imprecise nature of these guidelines, the importance of anchoring decisions in multiple 

sources of information (Marsh et al., 2004), and the need for further simulation studies in this area.  
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However, when invariance constraints are imposed to the latent means, all information criteria 

show increased values. This increase in the values of the information criteria, coupled with Fan and 

Sivo’s (2009) observation that changes in goodness-of- fit indices tend to be untrustworthy indicators 

of latent mean invariance, suggests that latent means may not be invariant across gender. The 

exploration of latent means reveals that, when boys’ latent means are fixed to zero for identification 

purposes, girls’ latent means (expressed in SD units) are significantly higher than those of the boys on 

the German competence (M = .408, p ≤ .05), and German affect (M = .243, p ≤ .05) S-factors. 

Conversely, girls’ latent means are significantly lower than boys’ on the physical abilities (M = -.606, 

p ≤ .01), and math competence (M = -.420, p ≤ .01) S-factors. No gender differences are apparent on 

the G-factor, as well as on the global self-esteem, peer, parent, appearance, academic competence and 

affect, and math affect S-factors. These results follow gender stereotypes and replicate those from 

previous studies (e.g., Marsh, 1989; Marsh & Ayotte, 2003).  

Study 2: Extended Illustration Based on a Simulated Data Set 

In order to provide a simpler and more complete pedagogical example of the use of the 

framework presented here, we rely on a simulated data set based on a known population model. A 

complete set of annotated input codes used to simulate the data and to estimate all models used in this 

study are provided in the online supplements. Interested readers can use these inputs to simulate their 

own data set and try their hand at estimating a wide variety of models. The parameter estimates for the 

measurement part (factor loadings and items’ uniquenesses) of the population model used to simulate 

the data are provided in Table S3 of the online supplements, and the complete population model is 

illustrated in Figure 2. To keep the model simpler than in Study 1, we simulated a population model 

including one global factor well-defined by 12 items, which also define three S-factors. These factors 

were specified as orthogonal in line with typical bifactor assumptions. Each S-factor is defined mainly 

through a total of 4 items (items X1 to X4 define mainly S-Factor S1; items Y1 to Y4 define mainly 

S-Factor S2; items Z1 to Z4 define mainly S-Factor S3). We simulated the data so that one of the S-

Factors (i.e., S-Factor S3) was more weakly defined than the other S-factors through lower target 

factor loadings (.300 to .500, versus .550 to .650 for the other S-factors). Furthermore, each item was 

simulated has having a very small (-.100 or .100) or small (.150 or .200) non-target cross-loading on 
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one additional S-factor. All non-target cross-loadings were kept under the boundaries of what is 

typically considered negligible in EFA/ESEM applications (Marsh, Lüdtke et al., 2013).  

We simulated the data using a multiple-group set up, using two groups including 800 

participants each, in order to be able to illustrate tests of measurement invariance. This also allowed 

us to use the grouping variable as a predictive (exogenous) covariate, so as to illustrate the MIMIC 

approach (e.g., Jöreskog & Goldberger, 1975; Marsh, Tracey, & Craven, 2006; Muthén, 1989). The 

population model was simulated with invariant factor loadings, invariant items’ uniquenesses, 

invariant factor variances (set to be equal to 1), and invariant relations between constructs. One item 

was simulated as having a non-invariant intercept (illustrated in Figure 2 as a direct effect of the 

grouping variable on item Y2). Latent mean differences across groups were simulated on the G-factor 

and the S-Factor S1. Apart from these differences, all other means and intercepts were set to be zero. 

We simulated one additional CFA factor (defined by items W1 to W4) as an outcome variable, 

specified as influenced by the grouping variable, the G-Factor, and the S-Factor S2. Thus, the full 

model includes an indirect effect of the grouping variable on the outcome factor as mediated by the G-

factor. This population model aimed at providing an illustration of all possible predictive relationships 

among the constructs. One factor (S1) was specified as being influenced by the grouping variable but 

having no influence on the outcome variable. One factor (S2) was specified as having an effect on the 

outcome but as not being influenced by the grouping variable. One factor (G) was specified as being 

influenced by the grouping variable while also having an effect on the outcome variable. Finally, the 

last factor (S3), which is more weakly defined than the others, was specified as being unrelated to the 

other constructs. Using the data simulation input provided in the online supplements, it would be easy 

for interested readers to define their own predictive model at the population level.  

For readers preferring a description of the simulated data set that is more in line with applied 

research, it is easy to find suitable examples. Thus, the binary grouping variable can easily reflect 

gender, or cultural groups. The G- and S- factors can reflect any construct that is well suited to 

bifactor representations. For instance, the G-Factor could reflect a global level of Attention-Deficit 

Hyperactivity Disorder (ADHD) while the S-factors could reflect more specific levels of Inattention, 

Hyperactivity, and Impulsivity going over and above global ADHD levels and be used to define 
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diagnostic subtypes (e.g., Morin, Tran et al., 2013). Alternatively, the G-factor could reflect either 

global Intelligence or Internalizing Disorders, whereas the S-factors could define specific cognitive 

strengths (e.g., Verbal Comprehension, Perceptual Reasoning, Working Memory, see Gignac & 

Watkins, 2013) or symptoms (e.g., Dysphoria, Suicidality, Social Anxiety, see Simms et al., 2008). 

Finally, the outcome variable could, for example, reflect later levels of academic achievement or 

attainment, life satisfaction, or psychological well-being.  

Analyses and Results 

Because the data was simulated to follow multivariate normality assumptions and without 

missing data, all analyses were conducted using Mplus 7.11 (Muthén & Muthén, 1998-2013) 

maximum likelihood (ML) estimator. We start the analyses by a comparison of ICM-CFA, bifactor-

CFA (B-CFA), ESEM, and bifactor-ESEM (B-ESEM) representations of the underlying structure of 

the scores on the indicators of the main “instrument” (i.e., items X1 to X4, Y1 to Y4, and Z1 to Z4), 

without taking the grouping variable or the outcome into account. These models are specified as in the 

previous study (see Figure 1) and in line with the population model (X1 to X4 are used to define one 

factor, Y1 to Y4 a second factor, and Z1 to Z4 a third factor). A first-order (CFA, ESEM) model with 

3 correlated factors is mathematically equivalent to a hierarchical (CFA, ESEM) model including the 

same 3 first-order factors used to define a single higher-order factor. Indeed, converting a 3-factor 

first-order model to a hierarchical model simply involves replacing three factor correlations by three 

higher-order factor loadings and thus results in an empirically equivalent model in terms of degrees of 

freedom and fit to the data (Hershberger & Marcoulides, 2013). For this reason, we do not investigate 

hierarchical models, but still report annotated inputs to illustrate their estimation in the online 

supplements. This allows us to focus on the comparisons between ICM-CFA and ESEM, and between 

first-order and bifactor models, that are critical to the framework presented here.  

Table 4 presents the goodness-of-fit indices and information criteria associated with the 

models. Both the ICM-CFA and B-CFA solutions provide an acceptable degree of fit to the data 

according to the CFI (.937 and .960) and TLI (.919 and .937), but not the RMSEA (RMSEA = .109 

and .096). In contrast, both the ESEM and B-ESEM models provide an excellent fit to the data (CFI = 

.996 and 1.000; TLI = .991 and .999; RMSEA = .036 and .013), higher values for the information 
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criteria and non-overlapping RMSEA confidence intervals in comparison with the ICM-CFA/B-CFA 

models. Although both the ESEM and B-ESEM models provide an excellent fit to the data, the fit of 

the B-ESEM model is better based on an improvement in fit indices (particularly the ΔRMSEA = -

.023), a decrease on the AIC, BIC, and ABIC, and non-overlapping RMSEA confidence intervals.  

This information suggests that the B-ESEM model should be retained as providing the best 

representation of the data. However, as mentioned previously, this final model selection should 

remain conditional on a detailed examination of the parameter estimates and theoretical conformity. 

As we are here using simulated data, theory cannot be used to help in guiding this decision (see 

previous study for an illustration), but knowledge of the population model confirms the adequacy of 

this decision. However, before interpreting the B-ESEM model, we start with a comparison of ICM-

CFA and ESEM to assess construct-relevant psychometric multidimensionality due to the fallible 

nature of the indicators. We then contrast ESEM and B-ESEM to investigate construct-relevant 

psychometric multidimensionality due to hierarchically-superior constructs. 

ESEM versus CFA. The ICM-CFA and ESEM solutions differ in their factor correlations 

(see Table 5) with lower factor correlations for ESEM (|r| = .475 to r = .629, M = .542) than ICM-

CFA (|r| =.516 to r = .731, M = .620), supporting the superiority of ESEM versus ICM-CFA. Here, 

knowing that the population-generating model is orthogonal alerts us to the fact that these models do 

not provide a full representation of the construct-relevant multidimensionality present in the scale. 

Parameter estimates from the ICM-CFA and ESEM models are reported in the online supplements 

(Table S4). An examination of the ESEM parameter estimates reveals well-defined factors due to 

substantial target factor loadings (varying from |λ| = .642 to .941; M = .810). Similarly, as expected, 

multiple non-target cross-loadings are also present (|λ| = .009 to .310; M = .100), providing additional 

support to the ESEM solution. Although it is not possible to substantively interpret the non-target 

cross-loadings with simulated data, these results provide clear evidence that construct-relevant 

psychometric multidimensionality linked to the fallible nature of the indicators simultaneously 

reflecting more than one construct content is likely to be present in the data, thus supporting the need 

to rely on ESEM. The superiority of B-ESEM in terms of fit to the data further suggests the 

appropriateness of investigating for the presence of a second source of construct-relevant 
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multidimensionality due to the presence of hierarchically-superior constructs.  

ESEM versus B-ESEM. The parameter estimates from the B-ESEM model are reported in 

Table 6. This B-ESEM solution shows that the G-Factor is well-defined by the presence of strong and 

significant target loadings from all items (|λ| = .466 to .791, M = .664). Over and above this G-factor, 

the S-factors are also well-defined through substantial target factor loadings (|λ| = .353 to .691, M = 

.523), suggesting that they do indeed tap into relevant specificity and add information to the G-factor 

– although the S-Factor S3 appears to be slightly more weakly defined (target |λ| = .353 to .583, M = 

.464) than S-factors S1 and S2 (target |λ| = .477 to .691, M = .691). Further examination of the B-

ESEM solution reveals that significant non-target cross-loadings are still present, thus supporting the 

value of a B-ESEM solution over a B-CFA solution. However, these non-target cross-loadings remain 

generally smaller (|λ| = .005 to .176; M = .073) than those estimated in ESEM (|λ| = .009 to .310; M 

= .100), showing that the bifactor operationalization allows for a more precise distribution of the 

various sources of construct-relevant multidimensionality present in the instrument.  

The Multiple-Group Approach to Measurement Invariance. The results from the tests of 

measurement invariance of the final retained B-ESEM model are reported in Table 4. The model of 

configural invariance provides an excellent fit to the data (CFI = .999; TLI = .997; RMSEA = .021). 

From this model, invariance constraints across groups were progressively added to the factor loadings 

(weak invariance), intercepts (strong invariance), uniquenesses (strict invariance), latent variances and 

covariances, and latent means. Adding invariance constraints on the factor loadings does not result in 

a decrease in model fit exceeding the recommended cut-off scores for the fit indices (ΔCFI and ΔTLI 

< .01; ΔRMSEA < .015), and results in lower values for the information criteria, supporting the weak 

invariance of the B-ESEM model. However, adding invariance constraints on the items’ intercepts 

results in a decrease in RMSEA exceeding the recommended value (ΔRMSEA = .018) and higher 

values on the AIC, BIC, and ABIC, suggesting that the strong invariance of the B-ESEM model may 

not fully hold across groups. For this reason, we explored a model of partial invariance (Byrne, 

Shavelson, & Muthén, 1989). Based on the modification indices associated with the model of strong 

invariance and an examination of the parameter estimates associated with the model of weak 
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invariance, we decided to relax the invariance constraint of item Y2 across groups, resulting in a 

model of partial strong invariance. When compared to the model of weak invariance, this model 

results in a decrease in fit that remained lower than the recommended cut-off scores for the fit indices 

(ΔCFI and ΔTLI < .01; ΔRMSEA < .015) and in lower values for the information criteria, supporting 

the adequacy of this model. When the parameters estimates from this model are examined, they show 

that group 2 (M = .104) tends to present higher levels than group 1 (M = -.177) on item Y2 to a degree 

that is in line with the specifications of the population-generating model (specifying a difference of 

.300 on item Y2). The results further support the strict invariance of the model, as well as the 

invariance of the latent variances and covariances (ΔCFI and ΔTLI < .01; ΔRMSEA < .015; lower 

values for the AIC, CAIC, BIC, ABIC). However, adding invariance constraints on the latent means 

results in an increase on the information criteria and the highest changes in fit indices observed so far 

(ΔCFI = -0.008; ΔTLI = -.010; ΔRMSEA = +.026). The results further show that when latent means 

are fixed to zero in group 1, latent means (in SD units) are significantly higher in group 2 on the G-

Factor (M = .455, p ≤ .01) but lower on the S-Factor S1 (M = -.509, p ≤ .01). No differences are 

apparent on the S-Factors S2 or S3. These results are in line with the population model (specifying 

opposite differences of .500 on the G-factor and S-Factor S1).  

The MIMIC Approach to Measurement Invariance. The multiple-group approach to 

measurement invariance provides a general framework for tests of measurement invariance when the 

grouping variable has a small number of discrete categories and the sample size for each group is 

reasonable. This approach can easily be extended to tests of longitudinal measurement invariance (for 

a pedagogical illustration using ESEM, see Morin, Marsh et al., 2013). Nevertheless, this approach 

might not be practical for continuous variables (e.g., SES, IQ level, age), multiple contrast variables 

(e.g., gender, cultural groups, experimental/control groups) and their interactions, or small sample 

sizes. In such situations, a more parsimonious MIMIC approach (Jöreskog & Goldberger, 1975; 

Marsh et al., 2006; Muthén, 1989) might be more appropriate. A MIMIC model is a regression model 

in which latent variables are regressed on observed predictors that can be extended to test potential 

non-invariance of item intercepts, that is, differential item functioning (DIF, monotonic DIF in the 

case of intercept non-invariance). Marsh, Nagengast et al. (2013) extended this approach to 
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investigate the loss of information due to categorizing continuous variables (to convert them to 

grouping variables for more complete tests of measurement invariance) through the separate 

estimation of a MIMIC model in each of the groups formed by the categorization of the continuous 

predictors. However, while the MIMIC model is able to test monotonic DIF, it implicitly assumes the 

invariance of the factor loadings (non-monotonic DIF). Although MIMIC models can be extended, 

through the incorporation of tests of latent interactions between predictors and factor scores, to tests 

of non-monotonic DIF, this extension is not yet available within the ESEM or B-ESEM frameworks 

(Barendse, Oort, & Garst, 2010; Barendse, Oort, Werner, Ligtvoet, & Schermelleh-Engel, 2012).  

The MIMIC model is more parsimonious than the multiple-group approach as it does not 

require the estimation of a separate model in each group, which makes it more suitable to smaller 

samples. The MIMIC approach also allows for the consideration of multiple independent variables, 

some or all of which can be continuous, and their interactions – something that is typically difficult to 

properly manage in multiple-group analyses. Monotonic DIF is evaluated by the comparison of three 

nested MIMIC models. In the first (null effect) model, the predictors have no effect on the latent 

means and items’ intercepts. In the second (saturated) model, the predictors are allowed to influence 

all items’ intercepts, but not the latent means. The third (invariant) model assumes the invariance of 

items’ intercepts across levels of the predictors, which are allowed to influence all latent means but 

not items’ intercepts. When the fit of the second and third models is better than the fit of the first 

model, the predictors can be assumed to have an effect. Comparing the second and third models tests 

whether the effects of the predictors on the items are fully explained by their effects on the latent 

means. Monotonic DIF is demonstrated when the fit of the second model is greater than the fit of the 

third model. Tests of partial invariance may then be pursued by including the direct effects of the 

predictors on the intercepts over and above their effects on the latent means.  

The results from MIMIC models where the grouping variable was treated as a predictor of the 

latent factors are reported in Table 4. The null effects model provides an acceptable fit to the data 

according to commonly used interpretation guidelines (CFI and TLI >.95; RMSEA < .06), suggesting 

limited effects of the grouping variable. However, both the saturated and invariant models provide an 

improved level of fit to the data (ΔCFI and ΔTLI = + .008 to .027, ΔRMSEA = -.021 to -.046, and 
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lower values for all of the information criteria). This suggests that the grouping variable must have an 

effect, at least on the latent means. When these two models are contrasted, the fit of the saturated 

model appears to be better than the fit of the invariant model according to the TLI (ΔTLI = + .010), 

RMSEA (ΔRMSEA = -.025), and the information criteria. This suggests that the effects of the 

grouping variable are not limited to the latent means, but also extend to some of the items’ intercepts 

(providing evidence of monotonic DIF). Examination of the modification indices associated with the 

invariant model and of the parameter estimates from the saturated model suggests that DIF is mainly 

associated with item Y2 (which we know to be the case based on the known population values). 

Allowing for direct effects of the grouping variable on Y2 resulted in a fit to the data that was 

equivalent to the fit of the saturated model (ΔCFI and ΔTLI = 0, and ΔRMSEA = -0.003) and in lower 

information criteria. Detailed results from this model reveal (in line with known population values) 

that participants’ levels on the G-factor (b = .455; β = .222, p < .001; R2 = .049) and item Y2 (b = 

.278; β = .131, p < .001; R2 = .740) tended to be higher in the second group, while levels on the S-

Factor S1 tended to be lower in the second group (b = -.509; β = -.247, p < .001; R2 = .061).  

Predictive Models. All models considered so far can easily be extended to test predictive 

relationships between constructs. To illustrate tests of predictive relationships, we simulated a data set 

including a grouping variable specified as predicting the B-ESEM factors (i.e., an exogenous 

predictor), and one additional latent CFA factor specified as being predicted by the B-ESEM factors 

(i.e., a distal outcome). These variables thus form the predictive system illustrated in Figure 2. More 

precisely, the relations among these constructs were simulated according to a partially mediated 

predictive system such that the effect of the exogenous predictor on the distal outcome are both direct, 

and indirect, being mediated by the effect of the exogenous predictor on the G-factor from the set of 

B-ESEM factors, which in turn also predicts the distal outcome. Mediation occurs when some of the 

effects of an independent variable (IV; here the exogenous predictor) on the dependent variable (DV; 

here the distal outcome) can be explained in terms of another mediating variable (MV; here the B-

ESEM factors) (MacKinnon, 2008). A mediator is thus an intervening variable accounting for at least 

part of the relation between an exogenous predictor and a distal outcome such that the exogenous 

predictor influences the distal outcome indirectly through the mediator(s).  
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Given the objective of the current paper to illustrate a psychometric framework allowing for the 

analysis of sources of construct-relevant multidimensionality present in a measurement model, our 

main objective here is to illustrate how this psychometric framework can be used in the estimation of 

predictive models. However, in the interest of space, we assume that readers are reasonably familiar 

with tests of mediation conducted within the SEM framework and only expand on issues that are 

specific to the bifactor-ESEM context. Readers not familiar with mediation testing and wishing to 

improve their knowledge in this area may consult a number of user-friendly introductions (e.g., 

Hayes, 2013; Jose, 2013; MacKinnon, 2008; MacKinnon, Fairchild, & Fritz, 2007).  

Typically, tests of mediation involve contrasting two models to verify whether the mediation is 

complete, or whether direct effects of the exogenous predictor(s) on the distal outcome(s) remain 

significant over and above their effects on the mediator(s). The fit statistics associated with these two 

models are reported in Table 4. The fully mediated model, where the exogenous predictor is allowed 

to influence the B-ESEM factors (as well as item Y2 based on the results from the MIMIC model) and 

the B-ESEM factors are allowed to influence the distal outcome, present a satisfactory level of fit to 

the data (CFI and TLI >.95; RMSEA < .06). However, the fit of the partially mediated model, 

including an additional relation between the exogenous predictor and the distal outcome, is better 

according to lower values for the RMSEA (ΔRMSEA = -0.018) and all information criteria. The 

parameter estimates from this model are in line with the population-generating model and show 

significant effects of the exogenous predictor on the G-factor (b = .453; β = .221, p < .001; R2 = .049), 

the S-factor S1 (b = -.507; β = -.246, p < .001; R2 = .060), and the distal outcome (b = .270; β = .210, 

p < .001), as well as significant effects of the G-factor (b = .279; β = .445, p < .001) and the S-factor 

S2 (b = .207; β = .322, p < .001) on the distal outcome (R2 =.404). These results suggest that the 

effects of the exogenous predictor on the distal outcome are partially indirect and mediated through 

the effect of the exogenous predictor on the G-factor.  

It is well documented that bootstrapped confidence intervals (CI) are the most efficient manner 

for testing the significance of indirect (mediated) effects (represented as the product of the IVMV 

and the MVDV path coefficients) (see Cheung & Lau, 2008; MacKinnon, Lockwood, & Williams, 

2004). Unfortunately, bootstrapping is not yet implemented in ESEM or B-ESEM, which represents 
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another limitation of the way these models are currently implemented. However, these tests can easily 

be implemented using the ESEM-Within-CFA (EWC) approach described by Morin, Marsh et al. 

(2013; also see Marsh, Nagengast et al., 2013, as well as the input files provided here in the online 

supplements). To implement this method, one needs to use the start values provided as part of the 

final predictive ESEM or B-ESEM model, to add the constraints required for identification purposes, 

and to re-estimate this model while requesting bootstraped estimation (see the online supplements for 

details of implementation). When our final model is re-estimated using this method and requesting 

bias-corrected bootstrapped confidence intervals, the results confirm that the indirect effect of the 

exogenous predictor on the distal outcome, as mediated by the G-factor, is significant as indicated by 

a bias-corrected bootstrapped 95% CI excluding 0 (indirect effect = b = .127; 95% CI = .088/.174).  

Another limitation of current implementations is that all factors forming a single set of ESEM 

or B-ESEM factors (i.e., a set of factors is defined as a group of factors defined by the same collection 

of items allowed to have their main loadings or cross-loadings on all factors included in the group) are 

required to be simultaneously related to other variables in the same manner (Asparouhov & Muthén, 

2009; Marsh et al., 2009). Attempts to estimate a model where the factors forming a single set are 

specified as having a different pattern of relations to other constructs (e.g., the exogenous predictor 

predicts S1 and G, but not S2 and S3; or including a regression between S1 and the outcome, but a 

correlation path between S2 and the outcome) would simply fail and produce a warning saying that 

the model has been misspecified. In the present study, this means that the exogenous predictor needed 

to be allowed to simultaneously predict the G-factor and the 3 S-factors. In turn, the G-factor and the 

3 S-factors was simultaneously allowed to predict the distal outcome factor. Although this was not 

necessary in the present application, the EWC method could have been used to circumvent this 

limitation. To do so, one would simply need to use the start values from the final ESEM or B-ESEM 

measurement model, to add the constraints required for identification purposes, and to replace the 

factor correlations linking the ESEM/B-ESEM factors to the other variables by the required predictive 

paths. We provide a sample input in the online supplements illustrating the implementation of this 

method to estimate only the predictive paths depicted in Figure 2.  

General Discussion 
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An Integrative Framework to Investigate Source of Construct-Relevant Multidimensionality 

This study illustrated an overarching psychometric approach of broad relevance to 

investigations of many complex multidimensional instruments routinely used in psychological and 

educational research. More precisely, we showed how an integration of classical (CFA), emerging 

(ESEM) and “rediscovered” (bifactor) models provides a general framework (bifactor-ESEM) for the 

investigation of two sources construct-relevant psychometric multidimensionality related to (a) the 

hierarchical nature of the constructs being assessed (i.e., the co-existence of global and specific 

components within the same measurement model) and (b) the fallible nature of indicators which tend 

to include at least some degree of association with non-target constructs. We argue that the first 

source of construct-relevant multidimensionality naturally calls for bifactor models, while the second 

source of construct-relevant multidimensionality rather calls for ESEM (rather than CFA). Thus, 

when both sources of multidimensionality are present, then a bifactor-ESEM model should be 

preferable. Such integrated models have only recently be made available and had yet to be 

systematically applied to the investigation of complex measurement instruments.  

The first step in the application of the proposed framework starts with a comparison of first-

order ICM-CFA and ESEM models to assess the presence of construct-relevant multidimensionality 

due to the fallible nature of the indicators and reinforced by the presence of conceptually-related or 

overlapping constructs. Given that bifactor models tend to absorb un-modeled cross-loadings through 

the estimation of inflated global factors (Murray & Johnson, 2013), it is important that the application 

of this framework always starts with a comparison of ESEM versus ICM-CFA models. In agreement 

with previous recommendations (e.g., Marsh et al., 2014; Morin, Marsh et al., 2013), we argue that 

this first comparison should routinely be conducted in the investigation of the measurement structure 

of any multidimensional instrument. In the examples provided in this manuscript, ESEM solutions 

provided a better fit to the data when compared to ICM-CFA models. The superiority of ESEM was 

further corroborated by the observation of lower factor correlations, resulting in more clearly 

differentiated factors. In line with previous recommendations (e.g., Morin, Marsh et al., 2013), 

applied studies (e.g., Marsh et al., 2009, Marsh, Lüdtke et al., 2010; Morin & Maïano, 2011), and 

simulations (Asparouhov & Muthén, 2009; Marsh, Lüdtke et al., 2013; Schmitt & Sass, 2011), these 
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observations converge in supporting the superiority of the ESEM solution – at least in the data sets 

considered here. As previously reinforced, decisions regarding the appropriateness of alternative 

models to represent sources of construct-relevant multidimensionality should not be taken in 

disconnection from a detailed examination of parameter estimates and substantive theory. The ESEM 

results from Study 1 showed that all factors were clearly defined by the expected pattern of target 

loadings and non-target cross-loadings, with stronger cross-loadings between conceptually-related or 

hierarchically-ordered scales. This last observation suggested the presence of construct-relevant 

multidimensionality involving hierarchically-superior constructs.  

The second step in the application of the proposed framework involves the comparison of 

first-order versus bifactor and higher-order solutions (relying on ESEM or CFA depending on the 

results from the first step), in order to assess the presence of construct-relevant multidimensionality 

due to the presence of hierarchically-superior constructs. Although we argued that the first step of this 

framework should be routinely applied to the investigation of any multidimensional instrument, this 

second verification should only be conducted when substantive theory and the results from the first 

step suggest that this second source of construct-relevant multidimensionality may be present in an 

instrument. In the examples considered here, the bifactor-ESEM was retained as providing the best 

fitting representation of the data after verification of theoretical (in Study 1) and empirical (in both 

studies) conformity of the parameter estimates. Indeed, in the bifactor-ESEM solutions, the G-factors 

were well-defined and clearly supported the presence of a global factor emerging from answers to the 

full set of items. It is true that, in Study 1, the inclusion of items specifically designed to assess global 

self-conceptions made the SDQ-I uniquely well suited to this illustration. However, the application of 

bifactor models is in no way dependent on the presence of items directly tapping into a global 

construct (e.g., Gignac & Watkins, 2013; Morin, Tran et al., 2013; Simms et al., 2008).  

The Meaning of the Alternative Models 

Construct-Relevant Multidimensionality: Items as Fallible Indicators of a Single 

Construct. A common idea in applied research is that good indicators need to provide a perfect 

reflection of a single construct, and that cross-loadings will inherently and irremediably change the 

meaning of the constructs that are estimated. Rather, following Marsh et al. (2014), we argue here that 
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a completely pure item that has no cross-loadings or other sources of non-random specificity is a 

convenient fiction – at best an impossible ideal and at worst a potentially serious distortion of reality 

that undermines the valid interpretation of the data. Seeking such ideals, absolute truths, and other 

golden rules in psychometrics that obviate subjective interpretations (Marsh et al., 2004) is not 

inherently bad. However, applied researchers need to understand that pure items do not exist in reality 

and will be rejected in a purely statistical sense when evaluated within a sufficiently broad framework 

(with large Ns and a sufficiently large number of items and factors). Of course, misfit associated with 

cross-loadings might be sufficiently trivial to be ignorable – providing an appropriate balance between 

complexity and parsimony – but support for such claims should be based on empirical results. 

The simple observation that many items are inherently expected to include construct-relevant 

multidimensionality explaining their association with multiple constructs shows that this requirement 

for pure indicators relies on a logic that inherently flawed. For example, in the assessment of anxiety 

and depression (e.g., Gignac et al., 2007; Simms et al., 2008), cross-loadings are expected due to the 

fact that some symptoms are inherently part of both disorders, such as insomnia and psychomotor 

agitation. Our illustration based on the SDQ-I also provides interesting examples. For instance, “I 

have a good looking body” (an indicator of physical appearance self-concept) had a significant non-

target cross-loading on physical ability self-concept, which could be related to the fact that athletic 

bodies tend to be perceived as more attractive. Similar examples are numerous and show that cross-

loadings do not “taint” the constructs, but rather allow the constructs to be estimated using all of the 

relevant information present at the indicator level. Remember that, according to the reflective logic of 

factor analyses, the factors are specified as influencing the indicators, rather than the reverse. Thus, 

small cross-loadings should be seen as reflecting the influence of the factor on the construct-relevant 

part of the indicators, rather than the indicators having an impact on the nature of the factor itself. It 

should be kept in mind that this interpretation applies to relatively small cross-loadings that are in line 

with theoretical expectations, whereas any model showing large and unexplainable cross-loadings or 

cross-loadings larger than target loadings should be re-examined.  

Furthermore, factor correlations tend to be substantially biased when non-zero cross-loadings 

are constrained to be zero (as shown in our simulated data set, as well as in Asparouhov & Muthén, 
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2009; Marsh, Lüdtke et al., 2013; Schmitt & Sass, 2011). This suggests that it is the exclusion of these 

cross-loadings that can drastically change the meaning of the constructs. This clearly underlines the 

importance for applied research to consider this additional source of construct-relevant psychometric 

multidimensionality even when the initial ICM-CFA model appears to fit the data well (Marsh, Liem 

et al., 2011; Marsh, Nagengast et al., 2011). As noted by Marsh et al. (2014, p. 104): “If the fit and 

parameter estimates (e.g., latent factor correlations) for the ICM-CFA do not differ substantially from 

the corresponding ESEM, on the basis of parsimony researchers should retain the CFA model”. 

Alternatively, when the fit of the ESEM solution is acceptable, higher than the fit of the ICM-CFA, 

and ESEM results in lower estimates of the factor correlations, then ESEM should be preferred.  

It is true that rotational indeterminacy raises additional questions. Indeed, any ESEM solution 

depends on the rotation procedure that is selected so that factors correlations and non-target cross-

loading can be directly increased or decreased by changing the rotation (Morin, & Maïano, 2011; 

Schmitt & Sass, 2011). With this in mind, simulation studies still show that, notwithstanding this 

issue, ESEM tends to provide factor correlation estimates that are closer to true population values, 

even if they are themselves imperfect due to rotational indeterminacy (e.g., Asparouhov & Muthén, 

2009; Marsh, Lüdtke et al., 2013; Schmitt & Sass, 2011). Furthermore, even when the true population 

model corresponds to ICM-CFA, ESEM still tends to adequately recover true population values. In 

this paper, we elected to rely on target rotation, which provides a confirmatory approach to ESEM 

(see Marsh et al., 2014) and allows the analyst to specify the expected pattern of associations between 

items and factors. Furthermore, when bifactor-ESEM models are specified as orthogonal (e.g., Chen 

et al., 2006; Reise, 2012), these concerns are somehow diminished. However, the reader should keep 

in mind that even for bifactor-ESEM, the selection of an orthogonal (versus oblique) rotation is itself 

a choice and subject to rotational indeterminacy (see Endnote 1 and Jenrich & Bentler, 2012).  

Construct-Relevant Multidimensionality: Hierarchically-Superior Constructs. Although 

our main focus is on bifactor models as a method of choice to model construct-relevant 

multidimensionality due to the presence of hierarchically-superior constructs, we also contrasted these 

models with hierarchical models in t study 1. The SLP (described earlier) makes obvious that both 

models estimate some form of global factor based on the covariance shared among all items, as well 



Construct-Relevant Multidimensionality   34

as variance components reflecting specificity associated with groupings of items that remain 

unexplained by the global factor (see also Chen et al., 2006). However, there are critical differences 

between the two approaches. Statistically, the strict proportionality constraints that are at play in 

hierarchical models limit their flexibility and practical applicability (Brunner et al., 2012; Chen et al., 

2006; Jenrich & Bentler, 2011; Reise, 2012). In line with this affirmation, the hierarchical-CFA and 

hierarchical-ESEM systematically provided the worst fit to the data of all models estimated in the first 

study. Substantively, the difference between these models is even more pronounced. A bifactor model 

assumes the existence of an overarching construct underlying all indicators, and estimates the S-

factors from the part of the indicators that remains unexplained by this global component. The S-

factors are thus seen as conceptually distinct from the G-factor. Conversely, a hierarchical model 

directly estimates the global factor from the first-order factors, rather than the indicators. The first-

order factors are thus a component of the global factor, rather than being separate from it.  

As shown in our illustration based on simulated data, even when the true underlying 

population model follows bifactor assumptions, it is possible for alternative first-order CFA or ESEM 

models to provide a satisfactory level of fit to the data through the simple “absorption” of this 

hierarchical structure via inflated factor correlations and/or item cross-loadings. However, these 

alternative models are substantively erroneous in that they completely ignore the underlying global 

construct that underlies responses to all indicators. In psychiatric measurement, Morin, Tran et al. 

(2013, p. 2) note that “an important question has to do with whether a primary dimension (e.g., 

depression, anxiety, ADHD, etc.) does exist as a unitary disorder, including specificities (i.e., as 

represented by a bifactor model), or whether these specificities rather define a set of distinct facets 

without a generic common core (i.e., represented by a classical CFA model)”. Fortunately, a detailed 

assessment of parameter estimates, theory, and statistical indices allowed us to pick the proper model 

in this simulated data study, although the fit of the alternative models generally proved satisfactory 

according to typical interpretation guidelines. Clearly, future simulation studies should investigate 

more thoroughly the efficacy of the various goodness-of-fit indices and information criteria in 

selecting the proper model amongst the alternative representations considered here.  

Conclusion 
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This study was designed to illustrate an overarching psychometric framework for the 

investigation of construct-relevant multidimensionality related to the fallible nature of the imperfect 

indicators typically used in applied research, and to the assessment of hierarchically-superior 

constructs within the same instrument. Although our results supported the use of bifactor-ESEM, we 

do not claim that this specific psychometric representation will necessarily generalize to all 

instruments that are routinely used in psychological, educational, and social sciences research. 

However, we anticipate that this specific combination (i.e., bifactor-ESEM) may prove to be quite 

important to consider when working with complex multidimensional measures. More generally, we 

argue that the full framework proposed here should be routinely applied to studies of complex 

instruments, especially those that include a separate subset of items specifically designed to assess 

hierarchically-superior constructs. In these contexts, we believe that typical solutions of modeling 

these items as a separate subscale, or simply of excluding them, should no longer be seen as adequate 

as it ignores the inherently hierarchical nature of the assessed constructs.  

Endnotes 

1 Bifactor estimation relies on orthogonal factors to ensure interpretability of the results. However, 

alternative models may be estimated where the S-factors are allowed to correlate to one another, 

although these models often pose interpretation and/or convergence problems. In B-CFA (or CFA 

more generally), orthogonal models are more parsimonious than comparative models based on 

oblique factors, and thus provide a different fit to the data. However, in ESEM or B-ESEM, oblique or 

orthogonal rotations have equivalent covariance implications and thus are statistically equivalent 

models with identical fit to the data. To ensure comparability with typical bifactor applications, as 

well as between B-CFA and B-ESEM, we relied on orthogonal rotation. However, exploring 

alternative procedures confirmed that our main conclusions were unaffected by this choice.  

2 An ESEM model including f factors is empirically impossible to distinguish from a B-ESEM model 

including f-1 S-factors: Both are equivalent, have the same degrees of freedom, and produce the same 

chi-square, fit indices, and information criteria (Hershberger & Marcoulides, 2013; MacCallum, 

Wegener, Uchino, & Fabrigar, 1993). The reason for this is that in ESEM, each item is allowed to 

load on all factors. So, in a B-ESEM model including f S-factors and one G-factor, each item is in fact 
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allowed to load on f +1 factors. This makes an ESEM model including f factors impossible to 

distinguish from a B-ESEM model including f-1 S-factors as both, in the end, will estimate the 

loadings of all items on a total of f factors. In fact, differences in results between these two solutions 

can be attributed to the inherent rotational indeterminacy of any EFA/ESEM application (e.g., Morin 

& Maïano, 2011; Morin, Marsh et al., 2013). For this reason, we recommend starting all comparisons 

by contrasting an ESEM model including f factors with a B-ESEM model including the same number 

of S-factors (i.e., only differing by the addition of the G-factor). Whenever the results from both 

models provide an adequate and similar level of fit to the data, then the results from the B-ESEM 

model should be systematically inspected in order to verify whether it makes sense to drop one of the 

S-factor including items that should theoretically relate only to the G-factor. 
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Figure 1. Graphical representation of the alternative models considered in this study.  
Note. CFA= Confirmatory factor analyses; ICM = Independent cluster model; ESEM = Exploratory structural 
equation modeling; X1-X3, Y1-Y3, Z1-Z3 = Items; F1-F3: Factors; HF: Higher-order factors; S1-S3: Specific 
factors in a bifactor model; G = Global factor in a bifactor model; Ovals represent latent factors and squares 
represent observed variables; full unidirectional arrows linking ovals and squares represent the main factor 
loadings; dotted unidirectional arrows linking ovals and squares represent the cross-loadings; full unidirectional 
arrows linked to the items or the factors represent the item uniquenesses or factor disturbances; bidirectional full 
arrows linking the ovals represent factor covariances/correlations; bidirectional dashed arrows connecting a 
single oval represent factor variances.  
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Figure 2. Graphical representation of the population generating model.  
Note. Circles represent latent factors and squares represent observed variables; dotted unidirectional arrows 
linking ovals and squares represent the factor loadings and cross loadings; full unidirectional arrows the ovals 
and squares represent regressions; full unidirectional arrows placed under the squares represent the item 
uniquenesses; full unidirectional arrows placed under the circles the factor disturbances; bidirectional dashed 
arrows connecting a single oval represent factor variances.  
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Table 1. Goodness of Fit Statistics and Information Criteria for the Models Estimated on the SDQ-I.  
Model χ2 df CFI TLI RMSEA RMSEA 90% CI AIC CAIC BIC ABIC 
ICM-CFA 8417.256* 2677 0.921 0.916 0.033 [0.032 – 0.034] 362516 364655 364330 363297 
H-CFA 12888.973* 2721 0.861 0.854 0.044 [0.043 – 0.044] 367961 369810 369529 368637 
B-CFA 12162.070* 2656 0.870 0.860 0.043 [0.042 – 0.044] 367183 369460 369114 368014 
ESEM 4760.960* 2027 0.963 0.947 0.026 [0.025 – 0.027] 359081 365496 364521 361424 
H-ESEM 5804.065* 2071 0.949 0.930 0.030 [0.029 - 0.031] 360295 366421 365490 362532 
B-ESEM 4183.547* 1962 0.970 0.956 0.024 [0.023 - 0.025] 358567 365410 364370 361066 
Configural invariance 6727.988* 3924 0.962 0.945 0.027 [0.026 - 0.028] 357830 371516 369436 362828 
Weak invariance 7526.937* 4703 0.962 0.954 0.025 [0.024 - 0.026] 357485 366045 364744 360611 
Strong invariance 8003.023* 4766 0.957 0.948 0.026 [0.025 - 0.027] 357900 366046 364808 360875 
Strict invariance 8645.824** 4842 0.949 0.940 0.028 [0.027 - 0.029] 358165 365810 364648 360956 
Cor. uniqu. Invariance 8178.084* 4872 0.956 0.948 0.026 [0.025 - 0.027] 358041 365489 364357 360761 
Var-covar. Invariance 8355.463* 4951 0.954 0.948 0.027 [0.026 - 0.027] 358131 365059 364006 360661 
Latent means invariance 8774.575* 4964 0.949 0.941 0.028 [0.027 - 0.029] 358567 365410 364370 361066 
Note. ICM= Independent cluster model; CFA = Confirmatory factor analysis; H = Hierarchical model; B = Bifactor model; ESEM = Exploratory structural 
equation modeling; df = Degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; 
CI = confidence interval; AIC = Akaike information criterion; CAIC = Constant AIC; BIC = Bayesian information criterion; ABIC = Sample size adjusted 
BIC; ESEM were estimated with target oblique rotation; bifactor-ESEM were estimated with bifactor orthogonal target rotation; * p < .01.  
 
Table 2. Standardized Factor Correlations for the CFA (above the diagonal) and ESEM (below the diagonal) solutions for the SDQ-I 
 Global Self-

Esteem 
Appearance Physical 

Ability  
Peer Parent Academic 

Competence 
Academic 
Affect 

German 
Competence 

German 
Affect 

Math 
Competence 

Math 
Affect 

Global Self-Esteem  0.724** 0.395** 0.727** 0.549** 0.552** 0.467** 0.423** 0.346** 0.354** 0.270** 
Appearance 0.619**  0.341** 0.619** 0.355** 0.348** 0.309**  0.278** 0.238** 0.200 **  0.170** 
Physical Ability  0.329** 0.300**  0.408** 0.208** 0.234** 0.249** 0.131** 0.139** 0.208** 0.214** 
Peer 0.565** 0.497** 0.370**  0.355** 0.336** 0.261** 0.298** 0.208 ** 0.206** 0.118** 
Parent 0.506** 0.324** 0.218** 0.311**  0.349** 0.373** 0.250** 0.300** 0.263** 0.260** 
Academic Competence 0.254** 0.118** 0.100** 0.204** 0.006  0.733** 0.722** 0.508** 0.636** 0.450** 
Academic Affect 0.215**   0.133**   0.147** 0.063** 0.311** 0.110**  0.506** 0.696** 0.487** 0.610** 
German Competence 0.267** 0.143** 0.043** 0.146** 0.228** 0.199**   0.406**  0.781** 0.251** 0.106** 
German Affect 0.219**   0.122** 0.109** 0.142** 0.180** 0.270** 0.343** 0.393**    0.150** 0.212** 
Math Competence 0.260** 0.111** 0.169** 0.100** 0.254** 0.235** 0.360** 0.282** -0.016  0.815** 
Math Affect 0.216** 0.145** 0.208** 0.089** 0.225** 0.198** 0.352** -0.060* 0.172** 0.648**  
Note.  * p < .05. ** p < .01 
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Table 3 
Standardized Factor Loadings for Bifactor-ESEM Solution of the SDQ-I 
Items  Global Self 

Esteem 
Appearance Physical 

Ability  
Peer Parent Academic 

Competence 
Academic 
Affect 

German 
Competence 

German 
Affect 

Math 
Competence 

Math Affect G-Factor Uniquenesses 

29 0.101 0.052* 0.053* 0.062* 0.000 -0.027 0.023 -0.067* 0.099** -0.090** -0.014 0.451** 0.753** 
37 0.277** 0.216** -0.013 0.119** 0.160** -0.033 0.042 0.026 -0.104** 0.030 -0.040 0.320** 0.637** 
45 0.381** 0.294** 0.088** 0.031   0.202** -0.141** 0.083 -0.047 -0.018    0.022 0.012 0.389** 0.538** 
53 0.348** 0.082** 0.072** 0.131** 0.173** -0.049 0.002 -0.035 -0.029 -0.032 -0.035 0.519** 0.544** 
61 0.273** 0.053* -0.038 0.056* 0.198** 0.008 -0.010 0.128** -0.125** 0.022 -0.077 0.433** 0.519** 
67 0.306** 0.025 0.027 0.110** 0.012 0.070   -0.118** -0.056* -0.069** 0.013 -0.065** 0.610** 0.489** 
70 0.280** 0.100** -0.023 0.254** 0.034 0.056 -0.061 -0.077* -0.025 -0.146** -0.022 0.469** 0.590** 
72 0.411** 0.281** 0.036 0.098** -0.003   -0.017 -0.083** -0.089** -0.076** -0.121** -0.045* 0.557** 0.393** 
74 0.355** 0.072** 0.002 0.086** -0.037 0.073 -0.132** -0.010 -0.046 -0.008 -0.118** 0.566** 0.500** 
76 0.368** 0.048* 0.025 0.051* 0.028 -0.024 -0.064* -0.077** -0.047* -0.025 -0.087** 0.594** 0.484** 
1  0.072** 0.629** 0.056** 0.094** -0.004 -0.015 -0.007 -0.017 -0.060** -0.045* -0.013 0.379** 0.438** 
8 0.175** 0.589** 0.102** 0.083** 0.074** -0.086 0.060 -0.010 -0.026 0.005 0.029 0.392** 0.433** 
15 0.021 0.690** 0.001 0.092** 0.003 -0.005 -0.005 -0.004 0.004   -0.058* -0.064** 0.449** 0.305** 
22 0.030 0.724** -0.020** 0.077** 0.011 0.026 -0.015 -0.046* -0.021 -0.056** -0.069** 0.478** 0.229** 
30 0.240** 0.528** 0.030 0.054* 0.128** -0.080 0.023 0.002 -0.038 0.035 0.010 0.376** 0.452** 
38 -0.010 0.378** 0.050* 0.281** -0.058* 0.116* -0.117** -0.086* -0.038    -0.126** -0.062* 0.428** 0.533** 
46 0.097* 0.307** 0.219** 0.050 0.017 -0.100* -0.016 -0.010 -0.066* -0.054* -0.055* 0.484** 0.590** 
54 0.009 0.365** 0.054* 0.099** -0.099** 0.086 -0.219** -0.169** -0.099** -0.069** -0.134** 0.400** 0.567** 
62 0.216** 0.350** -0.011 0.074** 0.029 0.038 -0.111** -0.038 -0.013 -0.119** -0.032 0.441** 0.599** 
3 -0.068 0.085** 0.619** 0.065** -0.054* -0.213** -0.058 0.018   -0.069 -0.047 -0.022 0.348** 0.420** 
10 0.025 0.010 0.512** 0.030 0.067** -0.138** 0.098* -0.013 0.030 -0.002 0.019 0.221** 0.653** 
17 0.119** 0.024 0.744** 0.095** 0.068** 0.342** 0.127 0.009 0.011 0.044 0.052 0.118** 0.267** 
24 0.090* 0.024 0.783** 0.095** 0.047* 0.264** 0.097 -0.023 0.055 0.016 0.047 0.180** 0.249** 
32 -0.005 0.073** 0.351** 0.055 -0.068** -0.062 -0.164** -0.184** -0.014 -0.025 -0.002 0.300** 0.708** 
40 0.010 0.045** 0.809** 0.059** -0.008 -0.058 -0.030 -0.020 -0.057** -0.012 0.003 0.320** 0.229** 
48 -0.049 -0.026 0.575** 0.025 -0.021 -0.123** -0.106** -0.046 -0.050 -0.004 0.002 0.403** 0.472** 
56 -0.020 0.050** 0.786** 0.037 -0.043** -0.117** -0.064 -0.037 -0.063* -0.062** -0.029 0.399** 0.189** 
64 -0.039 0.041 0.487** 0.048 -0.012 -0.100* -0.067 -0.150**  -0.059* 0.037 0.038 0.320** 0.612** 
7 0.085* 0.070** 0.127** 0.589** 0.116** -0.117 0.120** 0.056* -0.011 0.032 -0.051* 0.242** 0.518** 
14 0.009 0.051* 0.056** 0.518** -0.031 -0.045 0.008 0.047* -0.025 -0.011 -0.089** 0.317** 0.611** 
21 0.028   0.055** 0.101** 0.575** 0.042 0.010 0.010 0.086** -0.073** 0.023 -0.108** 0.271** 0.523** 
28 0.071 0.043     0.117** 0.504** 0.113** -0.112* 0.082* 0.019 -0.016 -0.017 -0.012 0.364** 0.560** 
36 0.128** 0.232** 0.019 0.333** -0.004 -0.012 -0.027 -0.034 -0.075** -0.059* -0.048* 0.398** 0.647** 
44 0.074 0.147** 0.025 0.499** 0.004 0.054 -0.107** -0.083** -0.021   -0.097** -0.042 0.448** 0.490** 
52 0.016 0.085** 0.055** 0.458** -0.044* 0.041 -0.135** -0.133** -0.018 -0.027 -0.058* 0.370** 0.599** 
60 0.073 0.112** 0.060** 0.454** -0.048* 0.088   -0.236** -0.098** -0.093** -0.060* -0.090** 0.486** 0.441** 
69 0.156** 0.143** 0.076** 0.546** -0.007 0.053 -0.123** -0.095** -0.051* -0.118** -0.060** 0.497** 0.357** 
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Items  Global Self 
Esteem 

Appearance Physical 
Ability  

Peer Parent Academic 
Competence 

Academic 
Affect 

German 
Competence 

German 
Affect 

Math 
Competence 

Math Affect G-Factor Uniquenesses 

5 0.086** 0.027 0.024 0.022 0.542** -0.028 0.038    0.002 0.038 -0.005 0.012 0.387** 0.543** 
12 0.103** -0.004 -0.058* 0.022 0.313** 0.068 0.017 0.107** -0.053 0.095** -0.032 0.311** 0.666** 
19 0.086   0.047** 0.028 -0.003 0.558** -0.073 0.032 -0.014 0.053* -0.005 0.016 0.281** 0.589** 
26 0.096* 0.088** 0.013 0.042 0.535** -0.011 -0.018 0.009 0.032 0.017 -0.012 0.302** 0.601** 
34 0.006 -0.002 -0.004 0.052* 0.413** 0.046 0.019 -0.017 0.001 -0.040 -0.019 0.347** 0.702** 
42 -0.005 -0.013 0.014 0.056 0.503** 0.089 -0.055 -0.090* -0.004 -0.047 -0.031 0.430** 0.537** 
50 0.021 -0.002 -0.018 -0.017 0.699** -0.042 -0.008 -0.050* 0.029 0.016 0.028 0.414** 0.332** 
58 0.059* 0.020  -0.028 -0.012 0.758** -0.060** 0.017 -0.050* -0.014 -0.021 0.004 0.423** 0.235** 
66 0.024   -0.024 0.029 0.032 0.650** 0.040 -0.079* -0.078** -0.053** -0.090** 0.019 0.432** 0.363** 
2 -0.102** -0.044** -0.074** -0.100** -0.068** 0.099 0.199** 0.267** -0.152** 0.155** -0.074** 0.604** 0.429** 
16 -0.128 -0.080** -0.065** -0.083** -0.043* 0.089 0.201** 0.293** -0.168** 0.142** -0.074** 0.638** 0.369** 
31 -0.067* -0.131** -0.046* -0.091* -0.060** 0.083 0.095** 0.170** -0.053* 0.168** -0.055** 0.628** 0.491** 
47 0.118** -0.017   -0.014 -0.025 0.061* -0.011 -0.001 0.220** 0.013 0.131** -0.025 0.446** 0.550** 
63 -0.070* -0.122** -0.076** -0.112** -0.101** 0.070 0.208** 0.099** -0.075** 0.154** -0.042 0.691** 0.386** 
9 -0.071** -0.011 -0.038* -0.094** 0.035 -0.024 0.367** -0.021 0.126** -0.065** 0.134** 0.585** 0.467** 
23 0.062 -0.011 -0.008 -0.020 0.092** 0.061 0.174** 0.085** 0.188** 0.007 0.180** 0.372** 0.624** 
39 -0.087** -0.097** -0.014 -0.128** -0.058 0.067 0.406** -0.087** 0.179** -0.049 0.147** 0.632** 0.331** 
55 -0.075** -0.097** -0.027 -0.096** -0.037* 0.021 0.404** -0.102** 0.232** -0.065** 0.195** 0.644** 0.289** 
71 -0.083** -0.131** -0.021 -0.111** -0.050** 0.051 0.418** -0.097** 0.196** 0.022 0.163** 0.658** 0.276** 
4 -0.060** -0.041* -0.117** -0.052** -0.054** 0.050 -0.029 0.596** 0.106** -0.054* -0.132** 0.530** 0.303** 
18 -0.081 -0.061** -0.086** -0.021 -0.055** 0.014 -0.028 0.595**   0.260** -0.023 -0.151** 0.548** 0.233** 
33 0.016    -0.023 -0.066** -0.044** -0.006 0.047 -0.039 0.524** 0.235** -0.004   -0.084** 0.508** 0.364** 
49 -0.036 -0.091** -0.087** -0.021 -0.064** 0.005 -0.069** 0.490** 0.336** -0.035 -0.145** 0.530** 0.317** 
73 -0.007 -0.113** -0.043* -0.036 -0.102** 0.014 -0.049 0.388** 0.291** -0.024 -0.187** 0.597** 0.343** 
11 -0.063** -0.004 -0.068** -0.054** 0.001 -0.032 0.122** 0.284** 0.595** -0.122** -0.047** 0.461** 0.309** 
25 -0.070** -0.026 -0.043* -0.055** 0.017 -0.018 0.120** 0.159** 0.618** -0.090** -0.008 0.486** 0.322** 
41 -0.071** -0.069** -0.008 -0.045** 0.004 -0.009 0.103** 0.160** 0.635** -0.124** -0.030 0.515** 0.268** 
57 -0.066 -0.073** -0.049** -0.076** 0.003 -0.021   0.118** 0.175** 0.651** -0.122** -0.014 0.541** 0.206** 
65 -0.003 -0.087 -0.051** -0.065** 0.009 0.016 0.071** 0.233** 0.566** -0.083** -0.040* 0.454** 0.333** 
13 -0.051* -0.069** -0.018 -0.034* -0.041* 0.000 -0.016 -0.071** -0.115** 0.616** 0.336** 0.423** 0.300** 
27 -0.058** -0.054** -0.045** -0.055** -0.028 0.029 0.004 0.036 -0.134** 0.622** 0.230** 0.491** 0.287** 
43 -0.028 -0.096** 0.015 -0.027 -0.019 -0.010 -0.034 -0.048* -0.102** 0.557** 0.344** 0.543** 0.251** 
59 -0.036* -0.072** -0.017 -0.070** -0.036* 0.016    -0.025 -0.027 -0.098** 0.630** 0.347** 0.542** 0.164** 
75 0.018 -0.073** 0.009 -0.067** 0.015 0.049 -0.030 -0.016 -0.108** 0.572** 0.315** 0.457** 0.309** 
6 -0.036 -0.043** 0.016 -0.084** 0.041* -0.013 0.048** -0.079** -0.078** 0.298* 0.644** 0.333** 0.347** 
20 -0.047** -0.046** -0.005 -0.094   0.011   0.005 0.113** -0.113** -0.009 0.253** 0.690** 0.454** 0.215** 
35 -0.071** -0.045** 0.026 -0.071** -0.005 0.003 0.090** -0.118** 0.001 0.265** 0.690** 0.464** 0.204** 
51 -0.026   -0.043** 0.025 -0.098** -0.016** 0.011 0.076** -0.099** -0.037** 0.275** 0.763** 0.460** 0.100** 
68 -0.060** -0.086** 0.039** -0.062** -0.013 -0.040* 0.095** -0.109** 0.000 0.282** 0.657** 0.478** 0.221** 

Note. Negatively worded items are italicized; * p < .05. ** p < .01 
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Table 4.  

Goodness of Fit Statistics and Information Criteria for the Models Estimated on the Simulated Data Set  

Model χ2 df CFI TLI RMSEA RMSEA 90% CI AIC CAIC BIC ABIC 
ICM-CFA 1020.469* 51 0.937 0.919 0.109 [0.103 – 0.115] 40905 41154 41115 40991 
B-CFA 661.772* 42 0.960 0.937 0.096 [0.090 – 0.103] 40564 40870 40822 40670 
ESEM 100.432* 33 0.996 0.991 0.036 [0.028 – 0.044] 40021 40385 40328 40146 
B-ESEM 30.139 24 1.000 0.999 0.013 [0.000 - 0.025] 39969 40390 40324 40114 
Configural invariance 65.071 48 0.999 0.997 0.021 [0.000 - 0.033] 39843 40685 40553 40134 
Weak invariance 98.538 80 0.999 0.998 0.017 [0.000 - 0.026] 39813 40451 40351 40033 
Strong invariance 173.907* 88 0.994 0.992 0.035 [0.027 - 0.043] 39872 40459 40367 40075 
Partial Strong Invariance 103.659 87 0.999 0.998 0.015 [0.000 - 0.026] 39804 40397 40304 40006 
Strict invariance 109.056 99 0.999 0.999 0.011 [0.000 - 0.022] 39785 40302 40221 39964 
Var-covar. Invariance 122.821 109 0.999 0.999 0.013 [0.000 - 0.023] 39779 40232 40161 39935 
Latent means invariance 252.702* 113 0.991 0.989 0.039 [0.033 – 0.046] 39901 40328 40261 40048 
MIMIC (Null) 235.810* 36 0.987 0.972 0.059 [0.052 – 0.066] 39969 40390 40324 40114 
MIMIC (Saturated) 30.894 78 1.000 0.999 0.013 [0.000 - 0.026] 39788 40285 40207 39959 
MIMIC (Invariant) 105.473* 70 0.995 0.989 0.038 [0.030 – 0.046] 39846 40293 40223 40000 
MIMIC (Partial Invariance) 36.184 31 1.000 0.999 0.010 [0.000 - 0.022] 39779 40232 40161 39935 
Predictive Model (full med.) 125.341* 81 0.998 0.996 0.018 [0.012 - 0.025] 56674 57229 57142 56865 
Predictive Model (part. med.) 73.479 80 1.000 1.001 0.000 [0.000 - 0.011] 56624 57185 57097 56818 
Note. ICM= Independent cluster model; CFA = Confirmatory factor analysis; B = Bifactor model; ESEM = Exploratory structural equation modeling; df = 
Degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; CI = confidence interval; 
AIC = Akaike information criterion; CAIC = Constant AIC; BIC = Bayesian information criterion; ABIC = Sample size adjusted BIC; ESEM were estimated 
with target oblique rotation; bifactor-ESEM were estimated with bifactor orthogonal target rotation;. *: p < .01.  
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Table 5.  

Standardized Factor Correlations for the CFA (above the diagonal) and ESEM (below the diagonal) solutions for the Simulated Data Set 

 Factor 1 Factor 2 Factor 3 
Factor 1  0.516** 0.613** 
Factor 2 0.475**  0.731** 
Factor 3 0.522** 0.629**  
Note.  * p < .05. ** p < .01 
 

 

Table 6.  

Standardized Factor Loadings for Bifactor-ESEM Solution for the Simulated Data 

Items G-Factor 
Loadings 

S-Factor1 
Loadings 

S-Factor2 
Loadings 

S-Factor3 
Loadings 

Uniquenesses 

X1 0.469**  0.602** -0.063* 0.100** 0.403**
X2 0.466**  0.691** 0.176** 0.008 0.273**
X3 0.663**  0.521** -0.176** -0.023 0.258**
X4 0.639**  0.556** -0.050* -0.096** 0.271**
Y1 0.661**  -0.023 0.533** 0.134** 0.261**
Y2 0.692**  0.130** 0.477** -0.015 0.276**
Y3 0.747**  -0.119** 0.546** 0.005 0.130**
Y4 0.745**  -0.042** 0.498** -0.075** 0.190**
Z1 0.789**  0.128** -0.006 0.369** 0.225**
Z2 0.791**  -0.011 0.174** 0.353** 0.219**
Z3 0.659**  0.005 -0.087** 0.552** 0.253**
Z4 0.644**  -0.079** 0.031* 0.583** 0.238**
* p < .05. ** p < .01 


